1 测试环境

1.1 硬件信息

CPUMemory网卡磁盘
48 Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz128G10000Mbps750GB SSD

1.2 软件信息

1.2.1 测试用例

测试使用graphdb-benchmark,一个图数据库测试集。该测试集主要包含4类测试:

  • Massive Insertion,批量插入顶点和边,一定数量的顶点或边一次性提交

  • Single Insertion,单条插入,每个顶点或者每条边立即提交

  • Query,主要是图数据库的基本查询操作:

    • Find Neighbors,查询所有顶点的邻居
    • Find Adjacent Nodes,查询所有边的邻接顶点
    • Find Shortest Path,查询第一个顶点到100个随机顶点的最短路径
  • Clustering,基于Louvain Method的社区发现算法

1.2.2 测试数据集

测试使用人造数据和真实数据

本测试用到的数据集规模
名称vertex数目edge数目文件大小
email-enron.txt36,691367,6614MB
com-youtube.ungraph.txt1,157,8062,987,62438.7MB
amazon0601.txt403,3933,387,38847.9MB

1.3 服务配置

  • HugeGraph版本:0.4.4,RestServer和Gremlin Server和backends都在同一台服务器上
  • Cassandra版本:cassandra-3.10,commit-log 和data共用SSD
  • RocksDB版本:rocksdbjni-5.8.6
  • Titan版本:0.5.4, 使用thrift+Cassandra模式

graphdb-benchmark适配的Titan版本为0.5.4

2 测试结果

2.1 Batch插入性能

Backendemail-enron(30w)amazon0601(300w)com-youtube.ungraph(300w)
Titan9.51688.123111.586
RocksDB2.34514.07616.636
Cassandra11.930108.709101.959
Memory3.07715.20413.841

说明

  • 表头"()“中数据是数据规模,以边为单位
  • 表中数据是批量插入的时间,单位是s
  • 例如,HugeGraph使用RocksDB插入amazon0601数据集的300w条边,花费14.076s,速度约为21w edges/s
结论
  • RocksDB和Memory后端插入性能优于Cassandra
  • HugeGraph和Titan同样使用Cassandra作为后端的情况下,插入性能接近

2.2 遍历性能

2.2.1 术语说明
  • FN(Find Neighbor), 遍历所有vertex, 根据vertex查邻接edge, 通过edge和vertex查other vertex
  • FA(Find Adjacent), 遍历所有edge,根据edge获得source vertex和target vertex
2.2.2 FN性能
Backendemail-enron(3.6w)amazon0601(40w)com-youtube.ungraph(120w)
Titan7.72470.935128.884
RocksDB8.87665.85263.388
Cassandra13.125126.959102.580
Memory22.309207.411165.609

说明

  • 表头”()“中数据是数据规模,以顶点为单位
  • 表中数据是遍历顶点花费的时间,单位是s
  • 例如,HugeGraph使用RocksDB后端遍历amazon0601的所有顶点,并查找邻接边和另一顶点,总共耗时65.852s
2.2.3 FA性能
Backendemail-enron(30w)amazon0601(300w)com-youtube.ungraph(300w)
Titan7.11963.353115.633
RocksDB6.03264.52652.721
Cassandra9.410102.76694.197
Memory12.340195.444140.89

说明

  • 表头”()“中数据是数据规模,以边为单位
  • 表中数据是遍历边花费的时间,单位是s
  • 例如,HugeGraph使用RocksDB后端遍历amazon0601的所有边,并查询每条边的两个顶点,总共耗时64.526s
结论
  • HugeGraph RocksDB > Titan thrift+Cassandra > HugeGraph Cassandra > HugeGraph Memory

2.3 HugeGraph-图常用分析方法性能

术语说明
  • FS(Find Shortest Path), 寻找最短路径
  • K-neighbor,从起始vertex出发,通过K跳边能够到达的所有顶点, 包括1, 2, 3…(K-1), K跳边可达vertex
  • K-out, 从起始vertex出发,恰好经过K跳out边能够到达的顶点
FS性能
Backendemail-enron(30w)amazon0601(300w)com-youtube.ungraph(300w)
Titan11.3330.313376.06
RocksDB44.3912.221268.792
Cassandra39.8453.337331.113
Memory35.6382.059388.987

说明

  • 表头”()“中数据是数据规模,以边为单位
  • 表中数据是找到从第一个顶点出发到达随机选择的100个顶点的最短路径的时间,单位是s
  • 例如,HugeGraph使用RocksDB查找第一个顶点到100个随机顶点的最短路径,总共耗时2.059s
结论
  • 在数据规模小或者顶点关联关系少的场景下,Titan最短路径性能优于HugeGraph
  • 随着数据规模增大且顶点的关联度增高,HugeGraph最短路径性能优于Titan
K-neighbor性能
顶点深度一度二度三度四度五度六度
v1时间0.031s0.033s0.048s0.500s11.27sOOM
v111时间0.027s0.034s0.1151.36sOOM
v1111时间0.039s0.027s0.052s0.511s10.96sOOM

说明

  • HugeGraph-Server的JVM内存设置为32GB,数据量过大时会出现OOM
K-out性能
顶点深度一度二度三度四度五度六度
v1时间0.054s0.057s0.109s0.526s3.77sOOM
10133245350,8301,128,688
v111时间0.032s0.042s0.136s1.25s20.62sOOM
1021149441131502,629,970
v1111时间0.039s0.045s0.053s1.10s2.92sOOM
101402555508251,070,230

说明

  • HugeGraph-Server的JVM内存设置为32GB,数据量过大时会出现OOM
结论
  • FS场景,HugeGraph性能优于Titan
  • K-neighbor和K-out场景,HugeGraph能够实现在5度范围内秒级返回结果

2.4 图综合性能测试-CW

数据库规模1000规模5000规模10000规模20000
Titan45.943849.1682737.1179791.46
Memory(core)41.0771825.905**
Cassandra(core)39.783862.7442423.1366564.191
RocksDB(core)33.383199.894763.8691677.813

说明

  • “规模"以顶点为单位
  • 表中数据是社区发现完成需要的时间,单位是s,例如HugeGraph使用RocksDB后端在规模10000的数据集,社区聚合不再变化,需要耗时763.869s
  • “*“表示超过10000s未完成
  • CW测试是CRUD的综合评估
  • 后三者分别是HugeGraph的不同后端,该测试中HugeGraph跟Titan一样,没有通过client,直接对core操作
结论
  • HugeGraph在使用Cassandra后端时,性能略优于Titan,随着数据规模的增大,优势越来越明显,数据规模20000时,比Titan快30%
  • HugeGraph在使用RocksDB后端时,性能远高于Titan和HugeGraph的Cassandra后端,分别比两者快了6倍和4倍

Last modified September 15, 2022: add rank api & fix typo (06499b02)