HugeGraph-Computer Quick Start
1 HugeGraph-Computer Overview
The HugeGraph-Computer is a distributed graph processing system for HugeGraph (OLAP). It is an implementation of Pregel. It runs on a Kubernetes(K8s) framework.(It focuses on supporting graph data volumes of hundreds of billions to trillions, using disk for sorting and acceleration, which is one of the biggest differences from Vermeer)
Features
- Support distributed MPP graph computing, and integrates with HugeGraph as graph input/output storage.
- Based on the BSP (Bulk Synchronous Parallel) model, an algorithm performs computing through multiple parallel iterations; every iteration is a superstep.
- Auto memory management. The framework will never be OOM(Out of Memory) since it will split some data to disk if it doesn’t have enough memory to hold all the data.
- The part of edges or the messages of super node can be in memory, so you will never lose it.
- You can load the data from HDFS or HugeGraph, or any other system.
- You can output the results to HDFS or HugeGraph, or any other system.
- Easy to develop a new algorithm. You just need to focus on vertex-only processing just like as in a single server, without worrying about message transfer and memory/storage management.
2 Dependency for Building/Running
2.1 Install Java 11 (JDK 11)
Must use ≥ Java 11 to run Computer, and configure by yourself.
Be sure to execute the java -version command to check the jdk version before reading
3 Get Started
3.1 Run PageRank algorithm locally
To run the algorithm with HugeGraph-Computer, you need to install Java 11 or later versions.
You also need to deploy HugeGraph-Server and Etcd.
There are two ways to get HugeGraph-Computer:
- Download the compiled tarball
- Clone source code then compile and package
3.1.1 Download the compiled archive
Download the latest version of the HugeGraph-Computer release package:
wget https://downloads.apache.org/incubator/hugegraph/${version}/apache-hugegraph-computer-incubating-${version}.tar.gz
tar zxvf apache-hugegraph-computer-incubating-${version}.tar.gz -C hugegraph-computer
3.1.2 Clone source code to compile and package
Clone the latest version of HugeGraph-Computer source package:
$ git clone https://github.com/apache/hugegraph-computer.git
Compile and generate tar package:
cd hugegraph-computer
mvn clean package -DskipTests
3.1.3 Configure computer.properties
Edit conf/computer.properties to configure the connection to HugeGraph-Server and etcd:
# Job configuration
job.id=local_pagerank_001
job.partitions_count=4
# HugeGraph connection (✅ Correct configuration keys)
hugegraph.url=http://localhost:8080
hugegraph.name=hugegraph
# If authentication is enabled on HugeGraph-Server
hugegraph.username=
hugegraph.password=
# BSP coordination (✅ Correct key: bsp.etcd_endpoints)
bsp.etcd_endpoints=http://localhost:2379
bsp.max_super_step=10
# Algorithm parameters (⚠️ Required)
algorithm.params_class=org.apache.hugegraph.computer.algorithm.centrality.pagerank.PageRankParams
Important Configuration Notes:
- Use
bsp.etcd_endpoints(NOTbsp.etcd.url) for etcd connectionalgorithm.params_classis required for all algorithms- For multiple etcd endpoints, use comma-separated list:
http://host1:2379,http://host2:2379
3.1.4 Start master node
You can use
-cparameter specify the configuration file, more computer config please see:Computer Config Options
cd hugegraph-computer
bin/start-computer.sh -d local -r master
3.1.5 Start worker node
bin/start-computer.sh -d local -r worker
3.1.6 Query algorithm results
3.1.6.1 Enable OLAP index query for server
If the OLAP index is not enabled, it needs to be enabled. More reference: modify-graphs-read-mode
PUT http://localhost:8080/graphs/hugegraph/graph_read_mode
"ALL"
3.1.6.2 Query page_rank property value:
curl "http://localhost:8080/graphs/hugegraph/graph/vertices?page&limit=3" | gunzip
3.2 Run PageRank algorithm in Kubernetes
To run an algorithm with HugeGraph-Computer, you need to deploy HugeGraph-Server first
3.2.1 Install HugeGraph-Computer CRD
# Kubernetes version >= v1.16
kubectl apply -f https://raw.githubusercontent.com/apache/hugegraph-computer/master/computer-k8s-operator/manifest/hugegraph-computer-crd.v1.yaml
# Kubernetes version < v1.16
kubectl apply -f https://raw.githubusercontent.com/apache/hugegraph-computer/master/computer-k8s-operator/manifest/hugegraph-computer-crd.v1beta1.yaml
3.2.2 Show CRD
kubectl get crd
NAME CREATED AT
hugegraphcomputerjobs.hugegraph.apache.org 2021-09-16T08:01:08Z
3.2.3 Install hugegraph-computer-operator&etcd-server
kubectl apply -f https://raw.githubusercontent.com/apache/hugegraph-computer/master/computer-k8s-operator/manifest/hugegraph-computer-operator.yaml
3.2.4 Wait for hugegraph-computer-operator&etcd-server deployment to complete
kubectl get pod -n hugegraph-computer-operator-system
NAME READY STATUS RESTARTS AGE
hugegraph-computer-operator-controller-manager-58c5545949-jqvzl 1/1 Running 0 15h
hugegraph-computer-operator-etcd-28lm67jxk5 1/1 Running 0 15h
3.2.5 Submit a job
More computer crd please see: Computer CRD
More computer config please see: Computer Config Options
Basic Example:
cat <<EOF | kubectl apply --filename -
apiVersion: hugegraph.apache.org/v1
kind: HugeGraphComputerJob
metadata:
namespace: hugegraph-computer-operator-system
name: &jobName pagerank-sample
spec:
jobId: *jobName
algorithmName: page_rank # ✅ Correct: use underscore format (matches algorithm implementation)
image: hugegraph/hugegraph-computer:latest
jarFile: /hugegraph/hugegraph-computer/algorithm/builtin-algorithm.jar
pullPolicy: Always
workerCpu: "4"
workerMemory: "4Gi"
workerInstances: 5
computerConf:
job.partitions_count: "20"
algorithm.params_class: org.apache.hugegraph.computer.algorithm.centrality.pagerank.PageRankParams
hugegraph.url: http://${hugegraph-server-host}:${hugegraph-server-port}
hugegraph.name: hugegraph
EOF
Complete Example with Advanced Features:
cat <<EOF | kubectl apply --filename -
apiVersion: hugegraph.apache.org/v1
kind: HugeGraphComputerJob
metadata:
namespace: hugegraph-computer-operator-system
name: &jobName pagerank-advanced
spec:
jobId: *jobName
algorithmName: page_rank # ✅ Correct: underscore format
image: hugegraph/hugegraph-computer:latest
jarFile: /hugegraph/hugegraph-computer/algorithm/builtin-algorithm.jar
pullPolicy: Always
# Resource limits
masterCpu: "2"
masterMemory: "2Gi"
workerCpu: "4"
workerMemory: "4Gi"
workerInstances: 5
# JVM options
jvmOptions: "-Xmx3g -Xms3g -XX:+UseG1GC"
# Environment variables (optional)
envVars:
- name: REMOTE_JAR_URI
value: "http://example.com/custom-algorithm.jar" # Download custom algorithm JAR
- name: LOG_LEVEL
value: "INFO"
# Computer configuration
computerConf:
# Job settings
job.partitions_count: "20"
# Algorithm parameters (⚠️ Required)
algorithm.params_class: org.apache.hugegraph.computer.algorithm.centrality.pagerank.PageRankParams
page_rank.alpha: "0.85" # PageRank damping factor
# HugeGraph connection
hugegraph.url: http://hugegraph-server:8080
hugegraph.name: hugegraph
hugegraph.username: "" # Fill if authentication is enabled
hugegraph.password: ""
# BSP configuration (⚠️ System-managed in K8s, do not override)
# bsp.etcd_endpoints is automatically set by operator
bsp.max_super_step: "20"
bsp.log_interval: "30000"
# Snapshot configuration (optional)
snapshot.write: "true" # Enable snapshot writing
snapshot.load: "false" # Do not load from snapshot this time
snapshot.name: "pagerank-snapshot-v1"
snapshot.minio_endpoint: "http://minio:9000"
snapshot.minio_access_key: "minioadmin"
snapshot.minio_secret_key: "minioadmin"
snapshot.minio_bucket_name: "hugegraph-snapshots"
# Output configuration
output.result_name: "page_rank"
output.batch_size: "500"
output.with_adjacent_edges: "false"
EOF
Configuration Notes:
| Configuration Key | ⚠️ Important Notes |
|---|---|
algorithmName | Must use page_rank (underscore format), matches the algorithm’s name() method return value |
bsp.etcd_endpoints | System-managed in K8s - automatically set by operator, do not override in computerConf |
algorithm.params_class | Required - must specify for all algorithms |
REMOTE_JAR_URI | Optional environment variable to download custom algorithm JAR from remote URL |
snapshot.* | Optional - enable snapshots for checkpoint recovery or repeated computations |
3.2.6 Show job
kubectl get hcjob/pagerank-sample -n hugegraph-computer-operator-system
NAME JOBID JOBSTATUS
pagerank-sample pagerank-sample RUNNING
3.2.7 Show log of nodes
# Show the master log
kubectl logs -l component=pagerank-sample-master -n hugegraph-computer-operator-system
# Show the worker log
kubectl logs -l component=pagerank-sample-worker -n hugegraph-computer-operator-system
# Show diagnostic log of a job
# NOTE: diagnostic log exist only when the job fails, and it will only be saved for one hour.
kubectl get event --field-selector reason=ComputerJobFailed --field-selector involvedObject.name=pagerank-sample -n hugegraph-computer-operator-system
3.2.8 Show success event of a job
NOTE: it will only be saved for one hour
kubectl get event --field-selector reason=ComputerJobSucceed --field-selector involvedObject.name=pagerank-sample -n hugegraph-computer-operator-system
3.2.9 Query algorithm results
If the output to Hugegraph-Server is consistent with Locally, if output to HDFS, please check the result file in the directory of /hugegraph-computer/results/{jobId} directory.
3.3 Local Mode vs Kubernetes Mode
Understanding the differences helps you choose the right deployment mode for your use case.
| Feature | Local Mode | Kubernetes Mode |
|---|---|---|
| Configuration | conf/computer.properties file | CRD YAML computerConf field |
| Etcd Management | Manual deployment of external etcd | Operator auto-deploys etcd StatefulSet |
| Worker Scaling | Manual start of multiple processes | CRD workerInstances field auto-scales |
| Resource Isolation | Shared host resources | Pod-level CPU/Memory limits |
| Remote JAR | JAR_FILE_PATH environment variable | CRD remoteJarUri or envVars.REMOTE_JAR_URI |
| Log Viewing | Local logs/ directory | kubectl logs command |
| Fault Recovery | Manual process restart | K8s auto-restarts failed pods |
| Use Cases | Development, testing, small datasets | Production, large-scale data |
Local Mode Prerequisites:
- Java 11+
- HugeGraph-Server running on localhost:8080
- Etcd running on localhost:2379
K8s Mode Prerequisites:
- Kubernetes cluster (version 1.16+)
- HugeGraph-Server accessible from cluster
- HugeGraph-Computer Operator installed
Configuration Key Differences:
# Local Mode (computer.properties)
bsp.etcd_endpoints=http://localhost:2379 # ✅ User-configured
job.workers_count=4 # User-configured
# K8s Mode (CRD)
spec:
workerInstances: 5 # Overrides job.workers_count
computerConf:
# bsp.etcd_endpoints is auto-set by operator, do NOT configure
job.partitions_count: "20"
3.4 Common Troubleshooting
3.4.1 Configuration Errors
Error: “Failed to connect to etcd”
Symptoms: Master or Worker cannot connect to etcd
Local Mode Solutions:
# Check configuration key name (common mistake)
grep "bsp.etcd_endpoints" conf/computer.properties
# Should output: bsp.etcd_endpoints=http://localhost:2379
# ❌ WRONG: bsp.etcd.url (old/incorrect key)
# ✅ CORRECT: bsp.etcd_endpoints
# Test etcd connectivity
curl http://localhost:2379/version
K8s Mode Solutions:
# Check Operator etcd service
kubectl get svc hugegraph-computer-operator-etcd -n hugegraph-computer-operator-system
# Verify etcd pod is running
kubectl get pods -n hugegraph-computer-operator-system -l app=hugegraph-computer-operator-etcd
# Should show: Running status
# Test connectivity from worker pod
kubectl exec -it pagerank-sample-worker-0 -n hugegraph-computer-operator-system -- \
curl http://hugegraph-computer-operator-etcd:2379/version
Error: “Algorithm class not found”
Symptoms: Cannot find algorithm implementation class
Cause: Incorrect algorithmName format
# ❌ WRONG formats:
algorithmName: pageRank # Camel case
algorithmName: PageRank # Title case
# ✅ CORRECT format (matches PageRank.name() return value):
algorithmName: page_rank # Underscore lowercase
Verification:
# Check algorithm implementation in source code
# File: computer-algorithm/.../PageRank.java
# Method: public String name() { return "page_rank"; }
Error: “Required option ‘algorithm.params_class’ is missing”
Solution:
computerConf:
algorithm.params_class: org.apache.hugegraph.computer.algorithm.centrality.pagerank.PageRankParams # ⚠️ Required
3.4.2 K8s Deployment Issues
Issue: REMOTE_JAR_URI not working
Solution:
spec:
envVars:
- name: REMOTE_JAR_URI
value: "http://example.com/my-algorithm.jar"
Issue: Etcd connection timeout in K8s
Check Operator etcd:
# Verify etcd is running
kubectl get pods -n hugegraph-computer-operator-system -l app=hugegraph-computer-operator-etcd
# Should show: Running
# From worker pod, test etcd connectivity
kubectl exec -it pagerank-sample-worker-0 -n hugegraph-computer-operator-system -- \
curl http://hugegraph-computer-operator-etcd:2379/version
Issue: Snapshot/MinIO configuration problems
Verify MinIO service:
# Test MinIO reachability
kubectl run -it --rm debug --image=alpine --restart=Never -- sh
wget -O- http://minio:9000/minio/health/live
# Test bucket permissions (requires MinIO client)
mc config host add myminio http://minio:9000 minioadmin minioadmin
mc ls myminio/hugegraph-snapshots
3.4.3 Job Status Checks
Check job overall status:
kubectl get hcjob pagerank-sample -n hugegraph-computer-operator-system
# Output example:
# NAME JOBSTATUS SUPERSTEP MAXSUPERSTEP SUPERSTEPSTAT
# pagerank-sample Running 5 20 COMPUTING
Check detailed events:
kubectl describe hcjob pagerank-sample -n hugegraph-computer-operator-system
Check failure reasons:
kubectl get events --field-selector reason=ComputerJobFailed \
--field-selector involvedObject.name=pagerank-sample \
-n hugegraph-computer-operator-system
Real-time master logs:
kubectl logs -f -l component=pagerank-sample-master -n hugegraph-computer-operator-system
All worker logs:
kubectl logs -l component=pagerank-sample-worker -n hugegraph-computer-operator-system --all-containers=true
4. Built-In algorithms document
4.1 Supported algorithms list:
Centrality Algorithm:
- PageRank
- BetweennessCentrality
- ClosenessCentrality
- DegreeCentrality
Community Algorithm:
- ClusteringCoefficient
- Kcore
- Lpa
- TriangleCount
- Wcc
Path Algorithm:
- RingsDetection
- RingsDetectionWithFilter
More algorithms please see: Built-In algorithms
4.2 Algorithm describe
TODO
5 Algorithm development guide
TODO
6 Note
- If some classes under computer-k8s cannot be found, you need to execute
mvn compilein advance to generate corresponding classes.